

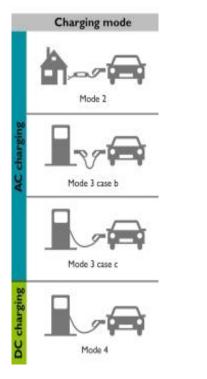
Fronius International GmbH Froniusplatz 1 4600 Wels

DOES EV CHARGING WITH PV MAKE SENSE?

AGENDA

- / Charging options
- / Charging power
- / Facts & Figures
- / Fronius Solutions
- / Profitability

- How to charge my EV at home?
- The concern of long charging times.
- About distance, capacity and charging time
- Which control options are available?
- Is EV charging with PV economical?


/ Perfect Welding / Solar Energy / Perfect Charging

How to charge my EV at home?

Charging options

CHARGING MODES - OVERVIEW

Charging device

ICCB cable – up to 22 kW In-cable-control-box

Wallbox – up to 43,5 kW

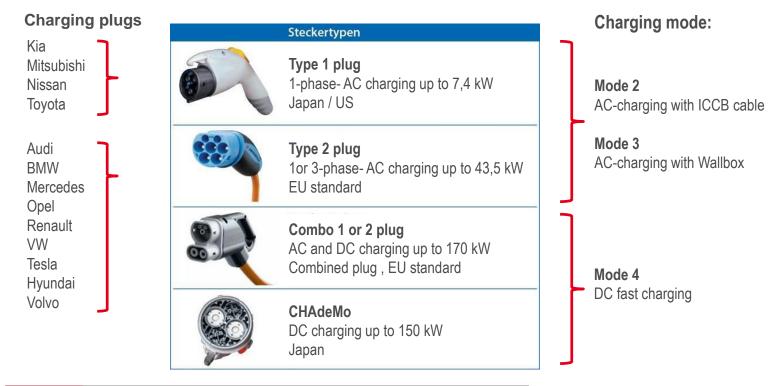
Fast charging station – up to 170 kW (Chademo, Combo, Type 2)

RESIDENTIAL CHARGING DEVICES

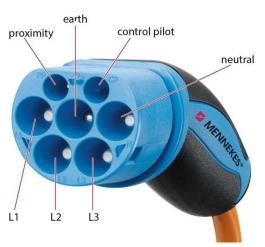
1. Charging socket: using ICCB-cable

<u>1-phase 230VAC socket</u>: > 2,3 kW with a CEE Cara socket Charging power **1,4 - 3,7 kW** (6 / 10 / 12 / 16 A)

<u>3-phase socket (ICCB cable including RCD Typ B)</u> Charging power **4,1 - 22 kW** (6 / 10 / 12 / 16 /32 A)



Charging power 1-phase **1,4 - 4,6 kW** (20 A) Charging power 3-phase **4,1 - 22 kW** (32 A)


CHARGING PLUGS ON EVS

TYPE 2 PLUG - NEW STANDARD 2016

Proximity PIN: Resistor in cabel (100 - 1500Ohm) Defines the max. current of the cable

Control pilot PIN: PWM Signal - EV status information - EV Ready signal (on / off)

- Max. current

No advanced communication between EV and charging station (AC charging)!

E.g.: Information of SOC isn't communicated.

The concern of long charging times

Charging power

EXPERIENCES OF EV AND PV OWNER'S

The concern of long charging times

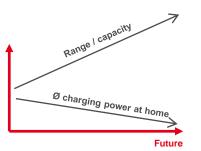
- / High charging power at home is **NOT** necessary!
- / Comfort is **NOT** effected by moderate charging power!
- / Moderate charging power can save money!

Why?

- / No need for fast charging at home (especially for new EVs with >30kWh capacity)
 - / EVs are not empty when arriving at home
- / "Slow charging" is sufficient to ensure a fully charged EV in the morning
 - 100km \rightarrow 3,7kW 1-phase \rightarrow <5h

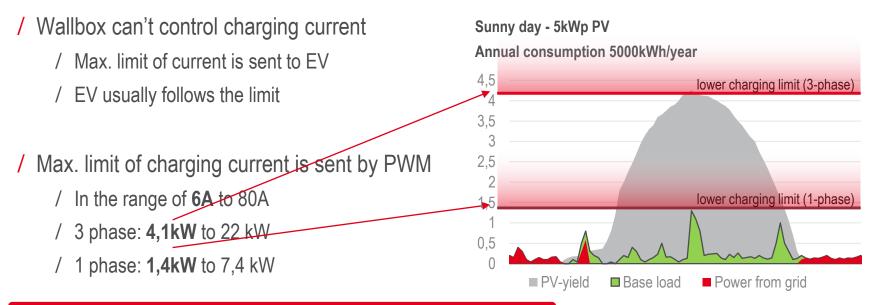
EXPERIENCES OF EV AND PV OWNER'S

The concern of long charging times


- / High charging power at home is not necessary!
- / Comfort is NOT effected by moderate charging power!
- / Moderate charging power can **SAVE money**!

Why?

- / Low charging power increases self consumption rate
- / Peak power related electricity tariffs
- / Charging power limits from grid operators

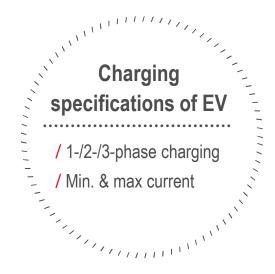

Development towards lower average charging power at home

CHARGING POWER WITH PV SYSTEM

3 phase charging is unfavorable for rather small PV systems (<5kW)

3 phase charging including stepless control doesn't make sense at all!

CHARGING POWER WITH PV SYSTEM


1 phase charging suits better to small PV systems

Realistic max. charging current

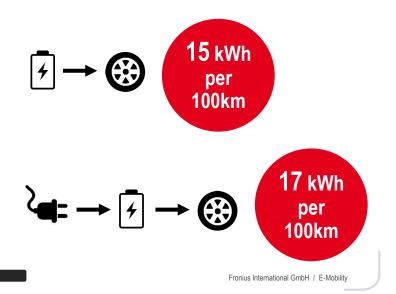
- / 6A to 16A (32A) (unbalanced load)
- / 1 phase 1,4kW to 3,7 kW (7,4 kW)

But:

- / No fast charging possible
- / Unbalanced loads

About distance, capacity and charging time

Facts & Figures


FACTS AND FIGURES – EV RANGE + CONSUMPTION

- / Calculation of the max. range of the EV:
- / Example (e-Golf):
- / Consumption also strongly depends on:
 - / Way of driving (highway, etc.)
 - / Ambient temperature (the colder the less capacity is available)
 - / Additional consumers (air-conditioning)

/ Charging capacity for AC charging @ 90% efficiency

$$Max.Range = \frac{Battery\ capacity}{Consumption} \cdot 100$$

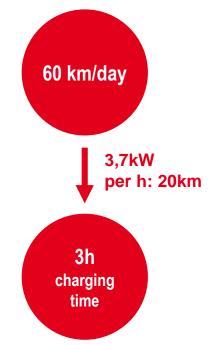
 $Max.Range = \frac{35,8kWh}{15kWh/100km} \cdot 100 = 238km$

FACTS AND FIGURES – CONSUMPTION PER DAY

/ Energy consumption per day: Consumption per day = $\frac{Consumption}{100}$ · Distance

/ Example (e-Golf, 60km/Tag):

Consumption per day
$$= \frac{17 \, kWh/100 km}{100} \cdot 60 km = \sim 10 kWh$$



FACTS AND FIGURES – RANGE AFTER 1 HOUR

- / Range after 1 hour of charging at home by charging power
 - / Assumption: 17 kWh/100km consumption

Info	Charging power	Range [km]
min. charging power (1-phase)	1,4 kW	~ 10 km
Schuko plug (1-phase)	2,3 kW	~ 15 km
Standard charging power (1-phase)	3,7 kW	~ 20 km
min. charging power (3-phase)	4,2 kW	~ 25 km
max. charging power (3-phase)	11 kW	~ 60 km

HOUSEHOLD – ELECTRICITY CONSUMPTION

~3000 kWh/a

Household:

Electricity demand per household	~5000 kWh/a
Distance per year (1 car)	17.500 km
Consumption per day	8 kWh

Additional energy demand for EV

Typical size of PV & storage systems

PV System size	~5 kWp
Additional PV for EVs	~3 kWp

Storage capacity without EV	6 – 7 kWh
Additional capacity with EV (evening charging)	6 – 8 kWh

PV + storage systems will increase!

household 9000 8000 7000 6000 6000 5000 4000 3000 2000 1000

■ Electricity demand household ■ Additional demand for a EV

Electricity demand of a typical Austrian

/ Perfect Welding / Solar Energy / Perfect Charging

How to combine PV and EV perfectly?

Fronius Solutions

CONTROL OPTIONS

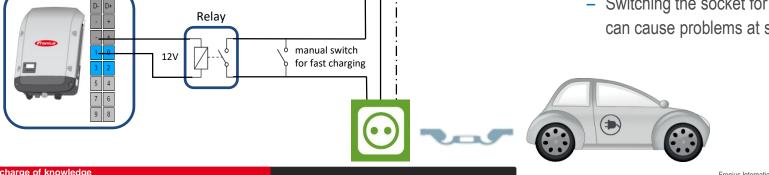
No control	Controlled by Fronius Datamanager	Stepless Control
Charging with standard Wallbox	Charging with a controlled Wallbox	Charging with a stepless controlled Wallbox
Charging starts when EV is plugged in	EV is charged when sufficient PV energy is available	Stepless control by external load management
Standard Wallbox or ICCB cabel required	Wallbox incl. "charging enable input" or controlled socket incl.	<u>Wallbox + external load</u> management required

ICCB cabel required

* Cost/ Savings in 5 years

CONTROLLED BY FRONIUS DATAMANAGER

Control of a charging socket


- 12V relay activates a socket when PV power is available (day charge)
- Night time charging mode: Ensures fully charged EV in the morning
- Manuel switch for fast charging
- 1-phase or 3-phase power point socket

Advantages

- + Easy, cheap and effective solution
- + Charging current is adjustable (with suitable ICCB cable)

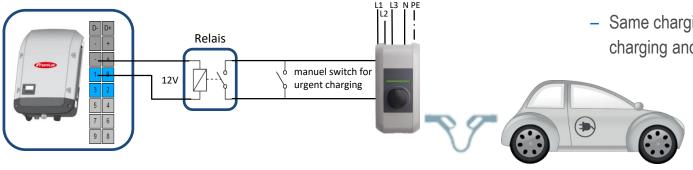
Disadvantages:

- Just on & off control possible
- Switching the socket for several times can cause problems at some EVs

I1 N PF

CONTROLLED BY FRONIUS DATAMANAGER

Control of a Wallbox

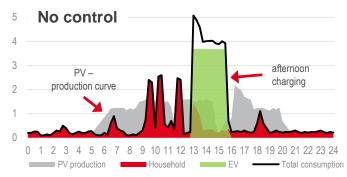

- 12V relay activates the "charging enable input" from the Wallbox when PV power is available (day charge)
- / Night time charging mode: Ensures fully charged EV in the morning
- / Manual operation switch for urgent charging

Advantages

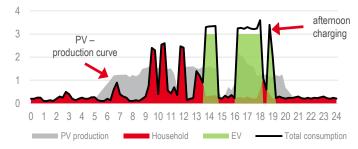
- + Easy and effective solution
- + Switching the Wallbox for several times doesn't cause problems

Disadvantages:

- Just on & off control possible
- Same charging current for PV charging and urgent charging


CONTROLLED BY FRONIUS DATAMANAGER

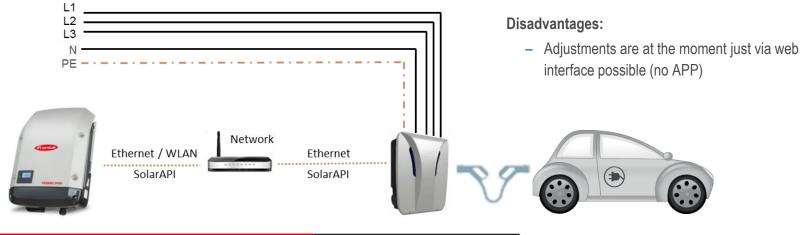
Comparison to "No control"


- / Higher self consumption rate
- / Night charging to ensure minimum charging capacity
 - / Use of cheap night time electricity tariff (evening charging or bad weather)

Example: Afternoon charging, cloudy

Range @17 kWh/100km	60 km	
Charging capacity	10,2 kWh	
PV energy charged in the EV directly		
No control 1,7 kWh		
Controlled by Fronius Datamanager	4,4 kWh	

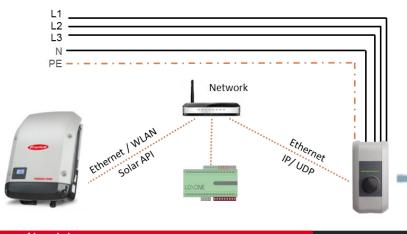
5 Controlled by Fronius Datamanager



STEPLESS CONTROL - ECHARGE CPH1

- / Stepless control
- / The integrated controller (eCB1) is used for load management
- / Communication via home network: SolarAPI
- / Link: <u>http://echarge.de/</u>

Advantages


- + Neat and tidy solution / design
- + Highest self consumption rate
- + Easy to install / easiest solution incl. stepless control

STEPLESS CONTROL - LOXONE - KEBA

- / Stepless control
- / Loxone is used for load management
- / Communication via home network
 - / Fronius Inverter Loxone: Solar API
 - / Loxone Keba Wallbox: IP/UDP

Advantages

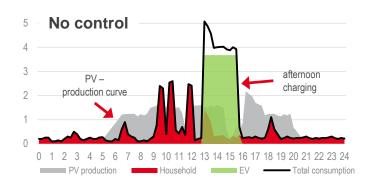
- + Neat and tidy solution / design
- + Individual load management can be implemented
- + Integration in the SmartHome

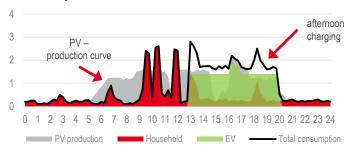
Disadvantages:

- Expensive

- Complex solution (knowledge in network technology and Loxone programming is necessary)
- Load management have to be programmed

STEPLESS CONTROL


Comparison to "no control"


- / Highest self consumption rate
- EV is charged with min. charging power below 1.4kW surplus energy (optional)

Example: Afternoon charging, cloudy

Range @17 kWh/100km	60 km		
Charging capacity	10,2 kWh		
PV energy charged in the EV directly			
No control	1,7 kWh		
Controlled by Fronius Datamanager	4,4 kWh		
Stepless control	6,1 kWh		

5 - Stepless solution

Fronius International GmbH / E-Mobility

/ Perfect Welding / Solar Energy / Perfect Charging

Is EV charging by a PV economic?

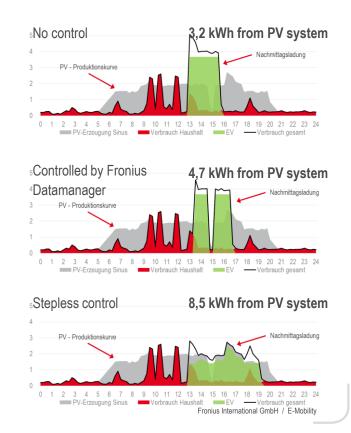
Profitability

ASSUMPTIONS

/	PV system:	6 kWp
/	Daily range:	60 km per day
/	Consumption:	17 kWh/100 km
/	Energy per day:	10.2 kWh
/	Charging power:	3.7 kW; 1 phase

Electricity tariff:	28 Cent/kWh
Feed in tariff:	12 Cent/kWh
Night tariff:	25 Cent/kWh
Price increase:	3 % per year

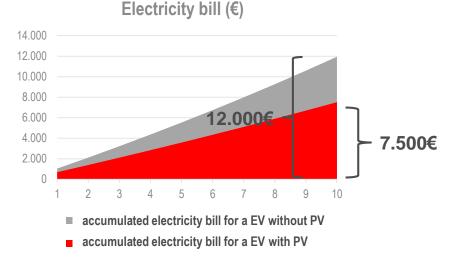
/ Investment costs:


Costs (Wallbox + Installation)	Wallbox	Installation	Sum	
No control	700€	400€	1.100€	eCharge cPµ1
Controlled by Fronius Datamanager	700€	500€	1.200€	eCharge cPµ1
Stepless control	1.250 €	600€	1.850€	eCharge cPH1

SIMULATION: SAVINGS

- / Simulation of the EV charging by different control options:
 - / No control
 - / Controlled by Fronius Datamanager
 - / Stepless control
- / Calculation of the higher self consumption rate and the savings depending on:
 - / Control option
 - / User behaviour

Example: Cloudy day, afternoon charging



DOES EV CHARGING WITH PV MAKE SENSE?

Electricity costs comparison of an EV:

- / Without PV
- / PV + stepless control

Savings due to PV system*	first year	after 10 vears
No control	€210	€ 2600
Controlled by Fronius Datamanager	€ 280	€ 3500
Stepless control	€ 350	€ 4500

*with the assumptions: 60km distance per day; 6kWp; user behaviour: part time)

DOES EV CHARGING WITH PV MAKE SENSE?

Savings after deduction of the investment costs (Wallbox + Control Option) after 10 years:*

No control€ 1.500Controlled by Fronius Datamanager€ 2.300Stepless control€ 2.600

YES! CHARGING OF THE EV WITH PV DOES MAKE SENSE!

YES! INTELLIGENT CONTROL OF CHARGING THE EV MAKES SENSE!

*with the assumptions: 60km distance per day; 6kWp; user behaviour: part time)

DOES CONTROL OF THE EV CHARGING MAKE SENSE?

Savings depend on:

- / <u>Distance per day</u>: higher distance per day \rightarrow higher savings
- / <u>User behaviour</u>: Is it possible to charge the EV during daytime? \rightarrow higher savings
- / <u>PV system size</u>: bigger PV system \rightarrow higher savings
- / <u>Additional factors</u>: load profile, charging power settings, EV capacity, etc.

Additional advantages of controlled EV charging:

- / Load peaks are avoided (load related electricity tariffs)
- / Additional reduction of electricity costs due to the use of cheap night tariffs

/ Perfect Welding / Solar Energy / Perfect Charging

Summary

SUMMARY

Controlled by Fronius Datamanger

Perfect for customers,

- / Who are looking for a simple and effective solution.
- / Who are interested in a cheap solution with a short payback time.
- / Who already use / wants to use a flexible electricity price (cheap night tariffs).
- / Who prefer a ICCB cable instead of a Wallbox.

SUMMARY

Stepless Control by eCharge cPH1

Perfect for customers,

- / Who are looking for a simple solution offering stepless control.
- / Who want additional options related to charging modes and charging power.
- / Who set a focus on very high self consumption.

SUMMARY

Stepless control by Keba – Loxone

Perfect for customers,

- / Who want a SmartHome solution.
- / Who prefer a individual load management adjusted to their special situation.
- / Where costs are not the most important factor.

Experience with Loxone and in general with load management is necessary!

/ Perfect Welding / Solar Energy / Perfect Charging

All information is without guarantee in spite of careful editing - liability excluded

Intellectual property and copyright: all rights reserved. Copyright law and other laws protecting intellectual property apply to the content of this presentation and the documentation enclosed (including texts, pictures, graphics, animations etc.) unless expressly indicated otherwise. It is not permitted to use, copy or alter the content of this presentation for private or commercial purposes without explicit consent of Fronius.